HIGN	1 1			
UBIN	1 1			

10ME55/10ME557

(06 Marks)

Fifth Semester B.E. Degree Examination, July/August 2021 **Manufacturing Process - III**

Time: 3 hrs. Max. Marks:100

		Note: Answer any FIVE full questions.	
1	a.	With neat sketches, explain the classification of metal working processes of	
		force applied.	(10 Marks)
	b.	Derive an expression for True stress and True strain.	(05 Marks)
	c.	An aluminium alloy having σ_0 (uniaxial flow stress) as 500MPa is subj	
		principal stresses. σ_x as 200 MPa (Tensile), $\sigma_y = 100$ MPa (Tensile),	
		(Compressive) and shear stress = 50MPa, will the material exhibit yielding?	
		the safety factor?	(05 Marks)
2	a.	Discuss effect of various parameters on metal working process.	(10 Marks)
_	b.	Explain deformation zone geometry.	(05 Marks)
	c.	Determine engineering strain, true strain and reduction for	6
		i) a bar which is doubled in length	
		ii) a bar which is halved in length.	(05 Marks)
3	a.	Derive an expression for forging pressure and load in open die forging by s	lab analysis in
		sliding friction at the interface and draw friction hill.	(10 Marks)
	b .	A circular disc of lead of radius 150mm and thickness 50mm is forged to h	alf its original
		thickness by open die forging. Determine the maximum forging force if the	coefficient of
		friction between job and the die is 0.25. The average yield stress is 4N/mm ² .	(05 Marks)
	c.	Explain briefly the forging defects.	(05 Marks)
4	a.	With neat sketch, explain different types of rolling mill arrangements.	(10 Marks)
•	b.	Calculate rolling load if steel sheet is hot rolled 30% from a 40mm thick slab	
	٠.	diameter roll. The slab is 760mm wide. Assume $\mu = 0.3$. The plain strain	
		140MPa at entrance and 200MPa at the exit during rolling.	(10 Marks)
5	a.	Write a note on estimation of "Redundant work" in drawing.	(07 Marks)
	b.	Explain with neat sketch tube drawing process.	(07 Marks)
	c.,	Explain optimal cone angle and dead zone formation in drawing.	(06 Marks)
	a		
6	a.	With a neat sketch, explain backward extrusion process. Explain why pow	er involved is
		much lesser than direct extrusion.	(06 Marks)
	b.	With a neat sketch, explain tube drawing process.	(06 Marks)
	c.	List out defects in extrusion and explain any one.	(08 Marks)
7	a.	Explain the following operations with neat sketches:	
		i) Rubber forming ii) Stretch forming.	(10 Marks)
	b.	With neat sketches, explain the following dies:	
		i) Progressive dies ii) Combination dies.	(10 Marks)
8 a	a.	With a flow chart explain the operations involved in making powder metallurg	gy parts.
			(08 Marks)
	b .	Explain unconfined explosive forming with a neat figure.	(06 Marks)
			(O(Nfl)

c. Explain with a neat figure Electromagnetic forming.